VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. II-Semester Advanced Supplementary Examinations, September-2023 Differential Equation & Vector Calculus

(Common to CSE, AIML & IT.)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 Marks)$

Q. No.	Stem of the question	M	L	CO	PO
1.	Define Exact Differential Equation.	2	1	92.19	
2.	Find the general solution of $ydx - xdy = (x^2 + y^2)dy$	2	2	1	1,12
3.	Solve the differential equation $(D^4 - 1)y = 0$.	2	2	2	1,2,13
4.	Evaluate $\frac{1}{D^2+9}\cos 3x$	2	2	2	1,2,12
5.	What is the physical meaning of curl of a vector point function?	2	1	3	1,12
6.	Find the unit normal vector to the surface $xy^3z^4 - 3x^3y^2z$ at (1,1,2).	2	2	3	1,2,12
7.	State Gauss's Divergence Theorem	2	1	4	1,12
8.	For what value of " β " vector $\overline{F} = (x + 3y)\overline{\iota} + (y - 2z)\overline{\jmath} + (x + \beta z)\overline{k}$ is solenoidal vector.	2	1	4	1,12
9.	Define Beta and Gamma function.	2	1	5	1,12
10.	Prove that $\Gamma(n+1) = n\Gamma(n)$.	2	1	5	1,2,12
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Solve the differential equation $(2x^3y^2 - 2x)dy = (x^2y^3 + 2y)dx$	4	2	1	1,2,12
b)	Find the Orthogonal trajectory of family of curves $x^2 - y^2 = ax$	4	2	1	1,2,12
2. a)	Solve the differential equation $(D^3 - D^2 + 4D - 4)y = e^x$	4	3	2	1,2,12
b)	Find the general solution of $\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + 4y = t^2 - 1$	4	3	2	1,2,12
3. a)	If $\bar{r} = xi + yj + zk$ and $ \bar{r} = r$, then prove that $div(r^n\bar{r}) = (n + 3)r^n$	4	3	3	1,2,12
b)	Find the constants a, b such that the surfaces $5x^2 - 2yz - 9x = 0$ and $ax^2y + bz^3 = 4$ cut orthogonally at the point $(1, -1, 2)$.	4	2	3	1,2,12

Code No.: 12221 AS O

14. a)	Change the order of Integration and evaluate $\int_{-a}^{a} \int_{0}^{\sqrt{a^2-x^2}} xy dy dx$	5	3	4	1,2,12
b)	Evaluate $\int_0^1 \int_0^2 \int_1^2 x^2 yz dz dy dx$	3	2	4	1,2,12
15. a)	T	3	3	5	1,2,12
b)	75	5	3	5	1,2,12
16. a)	Find the general and singular solution of $xp^3 - yp^2 + 1 = 0$.	4	2	1	1,2,12
b)	where $p = dy/dx$ Solve the differential equation $(D^2 + 4)y = \csc 2x$ by method of variation of parameters.	4	3	2	1,2,12
17.	Answer any <i>two</i> of the following:				
a)	If $\bar{f} = \operatorname{grad}(x^3 + y^3 + z^3 - 3xyz)$, then find curl \bar{f}	4	2	3	1,2,12
b)	Apply Green's theorem to evaluate $\int_{C} (3x^{2} - 8y^{2})dx + (4y - 6xy)dy$	4	3	4	1,2,12
	$\int_{c} (3x^{2} - 8y^{2})dx + (4y^{2} - 6xy)dy$ Where c is bounded by x=0, y= 0 & x + y=1				
c	State and prove Beta-Gamma relation.	4	1	5	1,12

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	38.75%
iii)	Blooms Taxonomy Level – 3 & 4	41.25%
